
New features in art

Kyle J. Knoepfel
Fermi National Accelerator Laboratory

February 10, 2016

art
•  Developers can be reached at artists@fnal.gov.

•  art is used by 9 experiments.

•  Our development efforts are guided by:

–  Current and future experiment needs, as reported on
the issue tracker or at stakeholder meetings.

–  Current and future software and hardware technology,
in and outside of HEP.

–  Constraints imposed by dependent packages.
–  Feedback from individual users, and our own

estimation of what features would make art simpler to
use.

2

art/LArSoft course
•  Last summer, we had a very successful art/LArSoft

course:

https://indico.fnal.gov/conferenceDisplay.py?confId=9928

•  Lot of material:

–  Basic art stuff
–  Creating products/dictionaries
–  Suggestions on workflow
–  Debugging tips
–  Improving your coding
–  etc.

•  No course this year due to financial constraints.

3

General improvements to art
•  Documentation (never-ending task)

•  More informative diagnostic messages

–  Parsing problems with configuration file
–  Incorrectly specified parameters for a module
–  Source of final value for a configuration parameter
–  Detecting inconsistent input files

•  Tighter restrictions on placing products onto the Event.

•  Relaxed requirements on product declarations.

•  Can process multiple output files if the first file has no

events in it.

4

art from 2015-Present

1.13 1.14 1.15 1.16 1.17 1.18
1.13.00
1.13.01
1.13.02

1.14.00
1.14.01
1.14.02
1.14.03

1.15.00
1.15.01
1.15.02

1.16.00
1.16.01
1.16.02

1.17.00
1.17.01
1.17.02
1.17.03
1.17.04
1.17.05
1.17.06
1.17.07

1.18.00
1.18.01
1.18.02

1.18.03
1.18.04
1.18.05

ROOT 5 ROOT 6

5

art from 2015-Present

1.13 1.14 1.15 1.16 1.17 1.18
1.13.00
1.13.01
1.13.02

1.14.00
1.14.01
1.14.02
1.14.03

1.15.00
1.15.01
1.15.02

1.16.00
1.16.01
1.16.02

1.17.00
1.17.01
1.17.02
1.17.03
1.17.04
1.17.05
1.17.06
1.17.07

1.18.00
1.18.01
1.18.02

1.18.03
1.18.04
1.18.05

ROOT 5 ROOT 6

cpp0x cetlib fhiclcpp messagefacility art

Dependency chain
Up to 1.17

6

art from 2015-Present

1.13 1.14 1.15 1.16 1.17 1.18
1.13.00
1.13.01
1.13.02

1.14.00
1.14.01
1.14.02
1.14.03

1.15.00
1.15.01
1.15.02

1.16.00
1.16.01
1.16.02

1.17.00
1.17.01
1.17.02
1.17.03
1.17.04
1.17.05
1.17.06
1.17.07

1.18.00
1.18.01
1.18.02

1.18.03
1.18.04
1.18.05

ROOT 5 ROOT 6

cpp0x cetlib messagefacility

Dependency chain
Up to 1.17

fhiclcpp art

Will primarily discuss new
features of fhiclcpp and art.

7

FHiCL and fhiclcpp

•  The current configuration language is
FHiCL 3:
– See the quick-start guide at

 https://cdcvs.fnal.gov/redmine/projects/fhicl/wiki
–  Recommendations for best practices – see session

22 from the art/LArSoft course.

•  fhiclcpp is the C++ binding which
provides a C++ interface to a parsed
FHiCL document.

8

New features in FHiCL
•  Main goal: reduce points of maintenance
•  Splicing utilities (already in widespread use)
•  @sequence::

9

New features in FHiCL
•  Main goal: reduce points of maintenance
•  Splicing utilities (already in widespread use)
•  @table::

10

New features in FHiCL
•  Modified binding operators

–  Introduces protection levels so that subsequent
attempts to override a value are either ignored or
trigger an exception.

11

New features in FHiCL
•  Modified binding operators

–  Introduces protection levels so that subsequent
attempts to override a value are either ignored or
trigger an exception.

12

New features in FHiCL
•  Modified binding operators

–  Introduces protection levels so that subsequent
attempts to override a value are either ignored or
trigger an exception.

13

New features in fhiclcpp

•  Extended ParameterSet retrieval.
– Supports more std containers

– Supports CLHEP objects

14

New features in fhiclcpp

•  Extended ParameterSet retrieval.
–  Can specify sequence elements.

•  Want Higgs mass from right.

15

New features in fhiclcpp

•  Extended ParameterSet retrieval.
–  Can specify sequence elements.

•  Want Higgs mass from right.

Before art 1.16

16

New features in fhiclcpp

Before art 1.16

art 1.16 -

•  Extended ParameterSet retrieval.
–  Can specify sequence elements.

•  Want Higgs mass from right.

17

New features in fhiclcpp
•  Helper utility: fhicl-dump

– Tool that prints out the fully processed FHiCL
document.

18

New features in fhiclcpp
•  Helper utility: fhicl-dump

– Tool that prints out the fully processed FHiCL
document.

19

New features in fhiclcpp
•  Helper utility: fhicl-dump

– Tool that prints out the fully processed FHiCL
document.

20

New features in fhiclcpp
•  Helper utility: fhicl-dump

– Tool that prints out the fully processed FHiCL
document.

21

New features in art

22

•  Command-line options
•  Product access through secondary files
•  Results products
•  Configuration validation & description
•  ROOT6

23

art --help

24

art --print-available-modules

art --print-available-modules

25

Two modules that are specified in the same way.
How does art know which one to use?

art --print-description InputProducerNoEvents

26

art --print-description InputProducerNoEvents

27
Using the long specification disambiguates between modules.

art --print-description BlockingPrescaler

28

If configuration description enabled
for the module/plugin, the allowed
configuration is printed.

Secondary files
•  One of the feature requests is to access

products from the same event but in a file
produced in an earlier process:
– Smaller memory footprint
– Access to unintentional dropping of products from

earlier processes

29

Secondary files
•  One of the feature requests is to access

products from the same event but in a file
produced in an earlier process:
– Smaller memory footprint
– Access to unintentional dropping of products from

earlier processes

30

Secondary files
•  One of the feature requests is to access

products from the same event but in a file
produced in an earlier process:
– Smaller memory footprint
– Access to unintentional dropping of products from

earlier processes

31

Not obvious how this can
work with SAM.

Results products

•  Feature request from NOvA:
– Need to be able to create products that do not

correspond to an Event, SubRun, or Run, but
correspond to a single result.

•  New kind of product (Results), and a
new kind of module (ResultsProducer).

32

ResultsProducer

33

ResultsProducer

Use the standard functions to build up your Results product,
which is a member of the RPTest class.

34

ResultsProducer

Before the output file is closed, writeResults is called.
To write the result, it needs only:
 res.put(std::make_unique<MyProduct>(…), myInstanceName);

35

ResultsProducer

Before the output file is closed, writeResults is called.
To write the result, it needs only:
 res.put(std::make_unique<MyProduct>(…), myInstanceName);

The clear function is a place for users to reset their counters, clear
their vectors, etc. It is called after writeResults.

36

ResultsProducer

Results products in the input file are not propagated to the output file.
You must handle product propagation yourself. That is the purpose of
readResults, which is called whenever an input file is opened.

37

ResultsProducer configuration

38

ResultsProducer configuration
•  ResultsProducers are

tied to specific output
streams.

•  Module label for a

ResultsProducer is the
output-stream label,
followed by ‘#’, and then
the producer module-
label.

•  The order of processing

is specified by the rpath
parameter.

39

ResultsProducer configuration
•  ResultsProducers are

tied to specific output
streams.

•  Module label for a

ResultsProducer is the
output-stream label,
followed by ‘#’, and then
the producer module-
label.

•  The order of processing

is specified by the rpath
parameter.

40

ResultsProducer configuration
•  ResultsProducers are

tied to specific output
streams.

•  Module label for a

ResultsProducer is the
output-stream label,
followed by ‘#’, and then
the producer module-
label.

•  The order of processing

is specified by the rpath
parameter.

41

Configuration validation & description

•  A common frustration:
 What is the allowed configuration for a
 given module?

•  One solution: look at the source code.
1.  Okay…where is it?
2.  I’m a newcomer. Do I have to look at (potentially

complicated) C++ to figure out how to configuration a
presumably simple job?

•  Better solution:
 Devise a system that documents itself,
 providing description and validation
 capabilities.

42

Configuration validation & description

•  Need to find way to represent in C++ the three
fundamental FHiCL values:

–  Atom: no underlying structure

 module_type: RootInput

–  Sequence: list of unnamed objects
 fileNames: [“a.root”, “b.root”]

–  Table: object with underlying name-value pairs
source: {

module_type: RootInput
fileNames: [“a.root”, “b.root”]

}

43

fhiclcpp type system
#include “fhiclcpp/types/Atom.h”
#include “fhiclcpp/types/Sequence.h”
#include “fhiclcpp/types/Table.h”

#include “fhiclcpp/types/OptionalAtom.h”
#include “fhiclcpp/types/OptionalSequence.h”
#include “fhiclcpp/types/OptionalTuple.h”
#include “fhiclcpp/types/OptionalTupleAs.h”
#include “fhiclcpp/types/OptionalTable.h”
#include “fhiclcpp/types/TableFragment.h”
#include “fhiclcpp/types/Tuple.h”
#include “fhiclcpp/types/TupleAs.h”

44

Simple analyzer

•  Provide list of composers, and print out
their names and birth/death dates

•  Use the following configuration:

45

First look at the class

46

First look at the class

47

Filling composers_

48

•  Ugly, but get’s the job done.

Filling composers_

49

•  Ugly, but get’s the job done…or not!

Filling composers_

50

•  Ugly, but get’s the job done…or not!
•  Oops…forgot the ‘s’ at the end of “death”.

Introducing the allowed configuration

51

Introducing the allowed configuration

52

Introducing the allowed configuration

53

???

Introducing the allowed configuration

54

Introducing the allowed configuration

55

Introducing the allowed configuration

56

Introducing the allowed configuration

57

What happens if you misspecify a parameter?

58

A better configuration

•  But the configuration was icky.
•  A better one:

59

A better configuration

•  But the configuration was icky.
•  A better one:

60

Heterogeneous sequences
Use Tuple<string,int,int>.

Introducing the allowed configuration

61

Introducing the allowed configuration

62

Introducing the allowed configuration

63

Index ‘i’ used only to access elements.
Replace with range-for loop.

Introducing the allowed configuration

64

Introducing the allowed configuration

65

Shouldn’t have to use push_back(Composer{…}).
The vector knows what type the element is. Replace
push_back with emplace_back.

Introducing the allowed configuration

66

What does the description look like?

67

What does the description look like?

68

What should I provide as
the string and the integers?

Adding a comment

69

Adding a comment

70

One of the very few times to use a preprocessor macro

•  If you need to provide a lengthy string literal.

71

Where we were…

72

Where we were…

73

Would be nice to have a mechanism that automatically converts
the Tuple sequence to Composer, without me having to do it by
hand.

Introducing TupleAs…

Where we were…

74

For this case:

TupleAs< Composer(string,int,int) >

Would be nice to have a mechanism that automatically converts
the Tuple sequence to Composer, without me having to do it by
hand.

Introducing TupleAs…

TupleAs

75

TupleAs

76

// returns vector<Composer>

Description with TupleAs

77

Description with TupleAs

78

Quite a bit more …

79

•  Conditional configuration
•  Optional parameters
•  Supporting flat configurations
•  See:
https://cdcvs.fnal.gov/redmine/projects/art/wiki/
Configuration_validation_and_description

ROOT5 vs. ROOT6
•  Practical considerations:

–  All ROOT development is concentrated on ROOT6/7.
•  ROOT5 is quickly becoming (if not already) an unsupported

product.
–  All LHC experiments have adopted ROOT6.

•  Technical considerations:
–  ROOT6 is much more stringent on syntax. Your macros

must contain valid C++.
–  ROOT6 uses more memory than ROOT5 does. Not

grossly so, but a little bit.
–  All ROOT5 files can be read by ROOT6.
–  All ROOT6 files can be read by ROOT5.
–  C++11/14 constructs are typically allowed for data-product

dictionaries.

80

ROOT5 vs. ROOT6
•  Practical considerations:

–  All ROOT development is concentrated on ROOT6/7.
•  ROOT5 is quickly becoming (if not already) an unsupported

product.
–  All LHC experiments have adopted ROOT6.

•  Technical considerations:
–  ROOT6 is much more stringent on syntax. Your macros

must contain valid C++.
–  ROOT6 uses more memory than ROOT5 does. Not

grossly so, but a little bit.
–  All ROOT5 files can be read by ROOT6.
–  All ROOT6 files can be read by ROOT5.
–  C++11/14 constructs are typically allowed for data-product

dictionaries.

ROOT6-supported versions of art exist.
•  Significant portion of last year went toward implementing them.

To our knowledge, no experiment has reported updating their
builds to use ROOT6.

We would greatly benefit from hearing of experiments’ experiences
when upgrading to ROOT6.

81

Soon to come …

•  More flexible output-file handling
•  Specifying an arbitrary list of events to

process
•  etc.

Thank you.

82

